UNIVERSITY BUDGET FOR PRIMARY ELECTROLYTIC CONDUCTIVITY MEASUREMENT COMPARING DIFFERENT METHODS

Abstract: In 2007, the Chemical Metrology Division (Dquim) from National Institute of Metrology, Standardization and Industrial Quality – Inmetro, established the primary system of electrolytic conductivity (EC) measurement. The main use of this system is to provide reliability and traceability to the EC measurements in Brazil since its measurement is very important, mainly for determining the purity of water. In order to show comparability and capability in primary EC measurement, Inmetro has participated in the key-comparison organized by Consultative Committee for Amount of Substance (CCQM) called CCQM-K36.1 to measure the EC in two solutions: one with a nominal value of 0.5 S m\(^{-1}\) and the other, 5 mS m\(^{-1}\). This work aims to present a comparison among the values of the uncertainty results from primary EC measurement in the solution of 0.5 S m\(^{-1}\) obtained by using the methods of ISO GUM, Kragten and Monte Carlo simulation. In addition, this work will also present an evaluation of the uncertainty related to all relevant sources in the uncertainty budget for EC measurement by using the primary EC system from Inmetro. Moreover, this study intends to show the main points which should be focused on in order to improve the process of primary EC measurement, when needed.

Keywords: uncertainty, electrolytic conductivity, primary measurements.

1. INTRODUCTION

EC measurement is an inexpensive electrochemical method and quite used by all the laboratories, mainly for determining the quality of water. It is an important parameter used as an input to the production or manufacturing of medicines and vaccines. Therefore, its precise measurement is very important in different fields such as health, food, environment, biotechnology among others. Inmetro guarantees the traceability and reliability of the measurement results through its primary EC measurement system. The aim of the primary EC system is to certify reference material [1] and provide the traceability in EC measurements for the country.

The ISO GUM 95 [2] aims at the international harmonisation of the uncertainty estimate calculation since the results of the measurements can be compared with others. The EURACHEM/CITAC Guide [3] based on ISO GUM 95 presents two alternatives for the uncertainty measurement calculation. The ISO GUM and its alternative methods [4-7] of calculation present some limitations, such as: model linearization, supposition of the measurand below the normal distribution and the Welch Satterthwaite formula due to effective degrees of freedom calculation. Given that the objective is to advance the limitations of these methods, the Monte Carlo simulation method was introduced in order to evaluate the uncertainty measurement. Monte Carlo is a method for the propagation of distributions by performing random sampling from probability distributions. Recently, the Working Group 1 of the Joint Committee for Guides in Metrology (JCGM) chaired by the director of the International Bureau of Weights and Measures (BIPM) has prepared a Supplement 1 to the GUM for evaluation of measurement data using the Monte Carlo’s method [8].

2. PURPOSE

The purpose of this work is to present the results of the uncertainty budget for EC primary measurement by comparing three different methods: ISO GUM, Kragten and Monte Carlo. Besides, this work will also present the main points which should be taken into account in order to improve the uncertainty measurement results.

3. METHODS

3.1 Primary System of Electrolytic Conductivity

The primary system of electrolytic conductivity measurement from Inmetro was described elsewhere [9]. The primary cell has cylindrical body and it is made of ceramic material. There are two platinum electrodes in each base of the cylinder. Figure 1 shows the cell at the Electrochemical Laboratory of Inmetro.
3.2. Procedure for electrolytic conductivity measurement

Approximately 170 mL of the sample was put in a recipient, which was closed and inserted in a water bath at 25 °C. The conductivity cell and the electrodes were washed with deionized water (Milli-Q® system), until the conductivity value from the rinsed water hit the value of 1.0 µS cm⁻¹. After that, the cell was left to dry. Then, the dried cell was rinsed with a tiny volume of the sample solution, which was in the water bath and filled with 160 mL of the sample solution. The cell was closed and maintained at the temperature of 25 °C. When the temperature was stabilized, impedance measurements were done in the range of frequencies from 100 to 5000 Hz. The measurements of the impedance were done in two different positions, related to the dislocation of one of the electrodes of the primary cell. The resistance of the sample was obtained graphically from the linear extrapolation to zero of the real part of the impedance measured versus inverse of frequency.

3.3. Procedure for estimation of the uncertainty

The ISO GUM’s method can be summarised in the following main steps: 1) measurand definition; 2) construction of the cause and effect diagram; 3) estimate of the standard uncertainties from the input quantity; 4) identification of the probability density functions related to each source of entry; 5) selection of the iteration numbers; 6) choice of the probability density function \(p(\alpha) \) and 7) estimate of the expanded uncertainty.

4. RESULTS

Figure 1 shows the cause and effect diagram related to the primary EC measurement of a solution of nominal value of 0.5 S m⁻¹. On the other hand, Figure 2 presents the contributions of the components to the uncertainty budget which is shown in Table 1, afterwards.
The standard uncertainty (u_x) for primary EC measurement obtained by three different methods using a solution of nominal value of 0.5 S m$^{-1}$ is shown in Table 2.

Table 1. Uncertainty budget for 0.5 S m$^{-1}$ solution.

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>Value</th>
<th>Assumed distribution</th>
<th>Standard uncertainty</th>
<th>Sensitivity coefficient</th>
<th>Contribution to standard uncertainty (U_x (S m$^{-1}$))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance measurement (R_{in})</td>
<td>10.15Ω</td>
<td>normal</td>
<td>0.00012Ω</td>
<td>0.0002Ω</td>
<td>1.1 × 10$^{-4}$</td>
</tr>
<tr>
<td>Cell diameter</td>
<td>0.0500003 m</td>
<td>normal</td>
<td>2.86 × 10$^{-6}$ m</td>
<td>2.01 × 10$^{-5}$ m</td>
<td>5.7 × 10$^{-4}$</td>
</tr>
<tr>
<td>Temperature measurement plus temperature correction (ΔT)</td>
<td>25.00°C</td>
<td>normal</td>
<td>0.01°C</td>
<td>0.02°C</td>
<td>2.0 × 10$^{-5}$</td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>5.37 × 10$^{-5}$ °C$^{-1}$</td>
<td>rectangular</td>
<td>1.01 × 10$^{-5}$ °C$^{-1}$</td>
<td>5.2 × 10$^{-5}$</td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>0.0001 Ω m$^{-1}$</td>
<td>rectangular</td>
<td>1.6 × 10$^{-5}$ Ω m$^{-1}$</td>
<td>1</td>
<td>1.2 × 10$^{-3}$</td>
</tr>
<tr>
<td>Repeatability</td>
<td>0.0 Ω m$^{-1}$</td>
<td>normal</td>
<td>0</td>
<td>0</td>
<td>4.0 × 10$^{-4}$</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>0.0 Ω m$^{-1}$</td>
<td>normal</td>
<td>0.01</td>
<td>0.01</td>
<td>4.6 × 10$^{-4}$</td>
</tr>
</tbody>
</table>

Combined standard uncertainty: 6.2 × 10$^{-4}$ S m$^{-1}$
Expanded uncertainty: 12.4 × 10$^{-4}$ S m$^{-1}$

The authors would like to thank the CNPq/PROMETRO and INMETRO/Dquim for the financial support.

REFERENCES